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Abstract. Structure and QED effects for 2s1/2 and 2p3/2 levels are calculated for lithiumlike U89+ trough
neonlike U82+, lithiumlike Th87+ trough neonlike Th80+ and lithiumlike Bi80+ trough neonlike Bi73+.
The results of the first two sets are compared with recent measurements of the 2s1/2 − 2p3/2 transition
energy in 3 to 10-electron ions. Good agreement with experiment is found for most of the observed lines.
Forty-one possible transitions are calculated for each ion in the eight ionization states, in the experimental
energy range. Twenty-eight of these transitions have not been observed, nor calculated previously. We
also calculate transition rates, branching ratios, excitation and ionization cross sections and confirm that
the thirteen experimental observed transitions correspond to the ones with highest relative intensities.
However, we find nineteen more transitions that could be measured in a more sensitive experiment.

PACS. 32.70.Cs Oscillator strengths, lifetime, transition moments – 32.70.Fw Absolute and relative in-
tensities – 31.25.-v Electron correlation calculations for atoms and molecules

1 Introduction

Recently, high-precision measurements of the 2s1/2−2p3/2

transition energies in lithiumlike U89+ trough neonlike
U82+ and lithiumlike Th87+ trough neonlike Th80+ were
made at an Electron-Beam Ion Trap (Super-EBIT) at
Lawrence Livermore Laboratory [1,2]. Since then, the ura-
nium measurements, with the exception of the neonlike
charge state, have been compared with the results from a
calculation using the Relativistic Configuration-
Interaction (RCI) method with B-splines basis functions
[3] and revealed a discrepancy less than 1 eV. For the
cases of lithiumlike, berylliumlike, carbonlike, fluorinelike,
and neonlike uranium the energies have also been calcu-
lated by the Relativistic Many-Body Perturbation Theory
(RMBPT) [4]. The energy values obtained using this
method are quite close to the experimental ones, with
the exception of berylliumlike and neonlike uranium. Yet
RMBPT cannot easily tackle the problem of nitrogen-like
and oxygen-like ions and RCI may not deal with more than
9 electrons because of the computer resources needed.

a e-mail: paul@spectro.jussieu.fr
b Unité Associée au CNRS No. 18

Reliable theoretical predictions of atomic levels require
methods that account for electron correlation, relativis-
tic, and quantum-electrodynamic (QED) corrections. The
MCDF method [5–9] is one of the most flexible compu-
tational schemes to produce Self-Consistent-Field (SCF)
wave functions that incorporate relativistic corrections and
the major part of the electron correlation for atoms with
simple and complex valence-shell configurations.

The purpose of this paper is to calculate all possi-
ble 2s1/2 − 2p3/2 transition energies in lithiumlike Th87+

trough neonlike Th80+ and lithiumlike U89+ trough neon-
like U82+ and extend them to lithiumlike Bi80+ trough
neonlike Bi73+, using the MCDF method as implemented
by Desclaux, Indelicato and collaborators [7–12] and make
a critical assessment of the precision of the MCDF method,
in a well defined case. This will enable to have a precise
knowledge of the accuracy of MCDF calculations for more
complicated ions (more than 10 electrons) for which both
RCI and RMBPT are likely to fail (RMBPT will however
always allow to do cases with closed shells with one extra
electron or one hole).

The MCDF program we used has very advanced fea-
tures that allow to treat residual terms, including Breit
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interaction, all-order retardation, magnetic correlation,
one-particle self-energy and vacuum polarization, and two-
electron radiative corrections. This program also include
full support for non-orthogonal orbitals between initial
and final state for non-diagonal one-electron operators
(transition probability...) using an approach different from
the one used by Froese Fisher and collaborators (biorthog-
onal transformations [13], which works only on restricted
classes of configurations subspace) and partial support for
non-orthogonal orbitals inside a given state. For example
we can include series of configurations like 1s2p + 2p′3d +
3d′4f · · · for up to 4 electrons. Finally it is the only MCDF
code to implement projection operators, and thus enables
to do a correct treatment of negative energy continuum
and correlation in strong field [12]. The price to pay is
that calculations are very demanding in computer time
and central memory, making it almost impossible to go
over a few hundred jj configurations in any given calcula-
tion. Other MCDF codes [14,5] are able to achieve calcu-
lations with several thousands of configurations, but they
do not implement projection operators, nor do they allow
complete inclusion of the Gaunt (Magnetic Interaction)
in the Self-Consistent Field process (it is included only
in the Hamiltonian matrix but not in the wave function
differential equation), thus limiting severely their useful-
ness at very high Z. An other limitation of the present
code is that even though it allows the freedom of hav-
ing non-orthogonal orbitals between correlation configu-
rations, it does not implement an energy expression valid
in the most general case. A full support of non orthogonal
orbital has been implemented only for one-electron op-
erators (transition probability, hyperfine structure...). To
achieve a sizeable amount of correlation with limited con-
figuration space we use the Optimized Level (OL) scheme,
and achieve self-consistence for all occupied and corre-
lation orbitals. It thus becomes often very hard or im-
possible to achieve convergence for very large number of
configurations, even with powerful numerical methods to
solve for individual orbitals. Other implementations of the
MCDF method [14] make it possible to achieve conver-
gence with much larger configuration sets. However full
self-consistency is not achieved. Only selected subset of
the configuration space are made self-consistent [15,16].

The shortcomings of our approach are thus compen-
sated by the extra possibilities of our code. These short-
comings could lead to severe problems at low-Z, but at
high-Z our method has been proven to be efficient and
precise for simple systems (2 and 3-electron ions). To go
beyond what we have achieved in the present work would
require in our opinion to use a combination of MCDF and
RMBPT. An other way would be to implement full sup-
port for non-orthogonal orbitals energy expression and a
systematic method to build very large configuration space,
but it is not clear at the moment that it would be suffi-
cient to lead to more efficient and precise calculations at
high-Z.

Our philosophy in this work was to put as many config-
urations as possible, limiting ourselves to principal quan-
tum numbers in the range 1 ≤ n ≤ 3 and trying to keep

a balance between initial and final state correlation. This
is particularly important since we included valence, core
valence and core correlation. Core correlation would give
a large effect on level energy, but would mostly cancel
on transitions, and an imbalance in core correlation could
shift the transition energy by a large amount.

The inclusion of a large amount of correlation in a
relatively easy way, i.e., with a small number of config-
urations, is an important feature of the MCDF method.
It is also very good at picking up intra-shell correlation,
a distinct advantage over RMBPT for Be-like or C-like
ions, for example. The MCDF code that we use can also
handle an arbitrary number of open shells. In our calcula-
tions we found many more transitions in the experimental
window than reported in both experimental papers (41
versus 13). In order to see whether some of these transi-
tions are contributing to the experimental spectrum, we
have performed a complete calculation of transition rates,
excitation (in the relativistic first Born approximation)
and ionization cross sections.

In the few electron ions considered here, correlation is a
sizable fraction of the transition energy. A combination of
our MCDF code and a RMBPT code was used recently to
calculate the energy of transitions between holes in singly
ionized atoms [17,18] with good accuracy. In that process
a good experience of comparing MCDF and RMBPT con-
tributions was acquired. We use it here to make a detailed
analysis of the transition energies in the F-like ions (con-
sidered here as a Ne-like ion with a 2p3/2 or a 2s1/2 hole),
to access the quality of both calculations.

The paper is organized in the following way. In Sec-
tion 2 we describe the MCDF method and our method for
evaluating QED corrections. Then we describe the evalu-
ation of transition rates and of ionization and excitation
cross sections. In Section 3 we describe the RMBPT cal-
culation of the F-like ion and make a detailed comparison
with the MCDF and RCI results. We compare our results
with the experiment in Section 4 and conclude in Sec-
tion 5.

2 MCDF Calculation

2.1 Correlation

When dealing with the relativistic many-body problem,
one has to combine many ingredients. A direct QED ap-
proach is currently unpractical for more than two elec-
trons. It is thus customary to use either the MCDF method
or the RMBPT to account for correlation, and correct
this result for one and two-body QED contributions (self-
energy, self-energy screening, ...). The correlation in this
scheme is the sum of all the Feynman ladder diagrams.
In this approach, non-radiative QED corrections to the
electron-electron interaction cannot be easily incorporated,
although they are of the same order of magnitude as radia-
tive corrections to the electron-electron interaction. This
comes from the fact that Hamiltonian methods are subject
to the continuum dissolution problem [19,20] . To solve
this problem one must use projection operators to avoid
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an incorrect coupling of the E > mc2 and the E < −mc2

continua.
Projection operators had to be included from the be-

ginning in RMBPT calculation, because if such a coupling
between the E > mc2 and the E < −mc2 continua is al-
lowed, it leads to infinite contributions (denominators can-
cel in second order perturbation terms). This was easily
performed because all RMBPT calculations are done with
finite basis set, and projection operators are implemented
by limiting sums over intermediate states to E > 0 terms.

In the MCDF method in contrast, because the con-
tinua do not appear explicitly, projection operators have
been implemented only recently [21]. The no-pair Hamil-
tonian is written [21–23]:

Hnopair =
m∑
i=1

HD(ri) +
∑
i<j

V (|ri − rj |) , (1)

where HD is a one-electron Dirac operator and V is an
operator representing the two-body interaction

Vij = Λ++
ij VijΛ

++
ij . (2)

In this equation we have, in the Coulomb Gauge,

Vij =
1

rij
−
αi ·αj
rij

−
αi ·αj
rij

(cos (ωijrij)− 1)

+ (αi ·∇i) (αj ·∇j)
cos (ωijrij)− 1

ω2
ijrij

, (3)

where rij = |ri − rj | is the inter-electronic distance, ωij is
the energy of the photon exchanged between the electrons,
αi are Dirac matrices (∇ operators act on the rij and not
on the the following wave function) and Λ++

ij = Λ+
i Λ

+
j is

an operator projecting onto the one-electron positive en-
ergy states. However, there is no explicit expression for
such an operator and other methods have to be found to
include approximate projection operators in MCDF cal-
culations [21].

The first term in equation (3) is the Coulomb interac-
tion, the second one is the Gaunt (magnetic interaction)
term and the other operators represent retardation (see,
e.g., [24,25]). The projection operators in equation (2) de-
pend a priori on the one-electron potential chosen for the
Hamiltonian [26,27] but it was checked in [21] that the
final answer is very insensitive to the choice of potential,
by using two variants of the Dirac-Fock potential.

2.2 Choice of configuration and of self-consistent
potential

Although the MCDF method as described above, and as
implemented in the code we used is completely general,
there are several choices to be made to keep the calculation
manageable. The first choice concerns the configuration
set. Our current code is limited to 700jj configurations.
For system with 2 to 5 electrons, this is usually sufficient.
For more complex cases with several open shells, and in

particular for the present calculation with a 2s hole in the
initial state, the number of degenerated configurations is-
sued from a single LS one can be very large. Here we had
to limit ourselves with n = 1, 2 and 3 shells. Correlating
hole states is also difficult in the MCDF method, because
too many constraints are imposed to some orbitals. An or-
bital can be used at the same time as a regular, occupied
orbital and as a correlation orbital for an inner shell. One
should really have different labels for those orbitals (see,
e.g., [28]). However that would change the energy expres-
sion to account for non-orthogonality between orbitals of
identical symmetry. Let’s take an example. We want to
do correlation on the 2s shell of 1s22s22p2. One possible
candidate would be 1s22p4. However in the 4 p electrons,
2 are real occupied orbitals, and 2 provide a correlation
contribution to the 2s2 pair correlation. They will have
a tendency to maximize their overlap with 2s, while the
former have no reason to do so. So one should in reality
add 1s22p22p′

2
. But then there should be extra terms in

the energy expression involving the overlap < 2p|2p′ >,
which we do not know how to do at the present time,
except for one electron operators evaluated between two
different levels [29]. This will most likely lead to an un-
derestimate of correlation energy. It also severely hampers
convergence when too much constraints are set to a given
orbital which is being used to correlate two orbitals in two
very different region of space.

Several precautions must be taken when choosing con-
figurations. In Table 1 we list the studied transitions and
the upper and lower levels of each transition with the cor-
respondent LS coupling labels (chosen to be the LS label
of the component with largest weight). Additionally we
included the number of LS and jj configurations used in
the energy calculation of each level.

The LS configurations included as correlation in the
calculation of the experimental observed transitions, ex-
cept for neonlike, are displayed in Table 2 and Table 3.

2.3 Radiative corrections

Radiative corrections for many-electron atoms can be sub-
divided in two categories: one-electron corrections, which
are identical to those of an hydrogenlike ion of the same
nuclear charge, and two-electron effects, very often re-
ferred to as screening effects. In each case one has to
evaluate a perturbation expansion in powers of the fine
structure constant α ≈ 1/137, each power of α corre-
sponding to one exchanged photon. There are also pow-
ers of Zα which represent the strength of the electron-
nucleus interaction, which cannot be treated perturba-
tively at high-Z. The one-electron corrections start at
order α(Zα)4 mc2, while the two-electron ones start at
order α2(Zα)3 mc2. The one-electron corrections of order
α(Zα)4 mc2 are composed of the self-energy and vacuum
polarization terms. The self-energy part has been calcu-
lated for strong Coulomb fields by Mohr and collabora-
tors [30–33] for several (n, `), and must be corrected for
finite nuclear size [34]. The vacuum polarization part can
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Table 1. List of the studied transitions with LS coupling labels (chosen to be the LS label of the component with largest
weight.) The LS and jj labels stands for the number of LS and jj configurations used, respectively.

Key Upper level LS jj Lower Level LS jj

Li (2p3/2) 2P3/2 21 93 (2s1/2) 2S1/2 24 55

Be (2s1/2 2p3/2) 1P1 27 163 (2s2
1/2) 1S0 24 50

B1 (2s1/2 2p1/2 2p3/2) 2D3/2 13 37 (2s2
1/2 2p1/2) 2P1/2 5 9

B2 (2s1/2 2p1/2 2p3/2) 2P1/2 13 33 (2s2
1/2 2p1/2) 2P1/2 5 9

B3 (2s1/2 2p2
3/2) 2S1/2 12 30 (2s2

1/2 2p3/2) 2P3/2 11 42

B4 (2s1/2 2p2
3/2) 2P3/2 10 34 (2s2

1/2 2p3/2) 2P3/2 11 42

C1 (2s1/2 2p1/2 2p2
3/2) 3D3 10 62 (2s2

1/2 2p1/2 2p3/2) 1D2 13 60

C2 (2s1/2 2p3
3/2) 3P2 13 91 (2s2

1/2 2p2
3/2) 3P2 13 70

C3 (2s1/2 2p3
3/2) 1P1 3 8 (2s2

1/2 2p2
3/2) 1S0 4 8

C12 ibid. (2s2
1/2 2p2

3/2) 3P2 13 70

C4 (2s1/2 2p1/2 2p2
3/2) 3P0 14 36 (2s2

1/2 2p1/2 2p3/2) 3P1 14 56

C5 (2s1/2 2p2
1/2 2p3/2) 1P1 14 90 (2s2

1/2 2p2
1/2) 3P0 15 32

C6 (2s1/2 2p1/2 2p2
3/2) 3S1 14 90 (2s2

1/2 2p1/2 2p3/2) 1D2 13 60

C9 ibid. (2s2
1/2 2p1/2 2p3/2) 3P1 14 56

C7 (2s1/2 2p1/2 2p2
3/2) 1D2 14 92 (2s2

1/2 2p1/2 2p3/2) 1D2 13 60

C10 ibid. (2s2
1/2 2p1/2 2p3/2) 3P1 14 56

C8 (2s1/2 2p1/2 2p2
3/2) 3P1 14 90 (2s2

1/2 2p1/2 2p3/2) 1D2 13 60

C11 ibid. (2s2
1/2 2p1/2 2p3/2) 3P1 14 56

N1 (2s1/2 2p2
1/2 2p2

3/2) 4P5/2 10 129 (2s2
1/2 2p2

1/2 2p3/2) 2P3/2 12 62

N2 (2s1/2 2p1/2 2p3
3/2) 4P3/2 10 140 (2s2

1/2 2p1/2 2p2
3/2) 2D5/2 14 172

N3 ibid. (2s2
1/2 2p1/2 2p2

3/2) 4S3/2 13 70

N4 (2s1/2 2p1/2 2p3
3/2) 2D5/2 10 129 (2s2

1/2 2p1/2 2p2
3/2) 2D5/2 14 172

N5 ibid. (2s2
1/2 2p1/2 2p2

3/2) 4S3/2 13 70

N6 (2s1/2 2p1/2 2p3
3/2) 2P1/2 10 99 (2s2

1/2 2p1/2 2p2
3/2) 2P1/2 19 174

N12 ibid. (2s2
1/2 2p1/2 2p2

3/2) 4S3/2 13 70

N7 (2s1/2 2p1/2 2p3
3/2) 2D3/2 10 140 (2s2

1/2 2p1/2 2p2
3/2) 2P1/2 19 174

N11 ibid. (2s2
1/2 2p1/2 2p2

3/2) 2D5/2 14 172

N13 ibid. (2s2
1/2 2p1/2 2p2

3/2) 4S3/2 13 70

N8 (2s1/2 2p4
3/2) 4P1/2 4 8 (2s2

1/2 2p3
3/2) 2P3/2 3 5

N9 (2s1/2 2p2
1/2 2p2

3/2) 2S1/2 12 152 (2s2
1/2 2p2

1/2 2p3/2) 2P3/2 12 62

N10 (2s1/2 2p2
1/2 2p2

3/2) 2P3/2 10 140 (2s2
1/2 2p2

1/2 2p3/2) 2P3/2 12 62

O1 (2s1/2 2p2
1/2 2p3

3/2) 3P2 18 226 (2s2
1/2 2p2

1/2 2p2
3/2) 3P2 20 419

O2 (2s1/2 2p1/2 2p4
3/2) 3P0 7a 55a (2s2

1/2 2p1/2 2p3
3/2) 3P1 9b 56b

O3 (2s1/2 2p2
1/2 2p3

3/2) 1P1 18 226 (2s2
1/2 2p2

1/2 2p2
3/2) 1S0 20 419

O6 ibid. (2s2
1/2 2p2

1/2 2p2
3/2) 3P2 20 419

O4 (2s1/2 2p1/2 2p4
3/2) 3P1 18c 226c (2s2

1/2 2p1/2 2p3
3/2) 1D2 20d 419d

O5 ibid. (2s2
1/2 2p1/2 2p3

3/2) 3P1 20 419

F (2s1/2 2p2
1/2 2p4

3/2) 2S1/2 7 80 (2s2
1/2 2p2

1/2 2p3
3/2) 2P3/2 6 84

Ne1 (2s1/2 2p2
1/2 2p4

3/2 3s1/2) 3S1 1 1 (2s2
1/2 2p2

1/2 2p3
3/2 3s1/2) 1P1 8 170

Ne2 ibid. (2s2
1/2 2p2

1/2 2p3
3/2 3s1/2) 3P2 5 126

Ne3 (2s1/2 2p2
1/2 2p4

3/2 3s1/2) 1S0 3 3 (2s2
1/2 2p2

1/2 2p3
3/2 3s1/2) 1P1 8 170

a In the bismuth case we used 18 LS (82 jj Configurations).
b In the bismuth case we used 20 LS (327 jj Configurations).
c In the thorium case we used 7 LS (140 jj Configurations).
d In the thorium case we used 9 LS (75 jj Configurations).
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Table 2. List of the LS configurations included as correlation in the calculation of the experimental observed transitions for
lithiumlike, berylliumlike, boronlike and carbonlike.

Li Be B C

Initial Final Initial Final Initial Final Initial Final

2s2 2p1 1s1 2s2 1s1 2s2 2p1 1s2 2p2 1s1 2s2 2p2 1s2 2p3 1s1 2p5 1s2 2p4

2p3 1s1 2p2 1s1 2p3 1s2 3s2 1s1 2p4 1s1 2s1 2p3 2s1 2p5 1s1 2s1 2p4

1s2 3p1 2s1 2p2 2s1 2p3 1s2 3p2 2s1 2p4 2s2 2p3 1s2 2s1 2p2 3p1 2s2 2p4

1s1 2s1 2p1 2s1 3s2 1s2 2s1 3p1 1s2 3d2 1s2 2s1 3s2 2p5 1s2 2s1 2p1 3s2 2p6

1s1 2s1 3p1 1s1 2s1 3s1 1s2 2p1 3s1 1s2 2s1 3s1 1s2 2s1 2p1 3p1 1s2 2s1 2p1 3p2 1s2 2s2 2p1 3p1

1s1 2p1 3s1 2s2 3s1 1s2 2p1 3d1 1s2 2s1 3d1 1s2 2s1 3s1 3d1 1s2 2s1 2p1 3d2 1s2 2s2 3s2

1s1 2p1 3d1 1s1 2p1 3p1 1s2 3s1 3p1 1s2 2p1 3p1 1s2 2s1 3p2 1s2 2s1 3s2 3p1 1s2 2s2 3s1 3d1

1s1 3s1 3p1 2s1 3p2 1s2 3p1 3d1 1s2 3s1 3d1 1s2 2s1 3d2 1s2 2s1 3p1 3d2 1s2 2s2 3p2

1s1 3p1 3d1 2s1 3d2 1s1 2s2 3p1 1s1 2s2 3s1 1s2 2p2 3s1 1s2 2s1 3p3 1s2 2s2 3d2

2s2 3p1 1s1 3s2 1s1 2s1 2p1 3s1 1s1 2s2 3d1 1s2 3s2 3d1 1s2 2s2 2p1 3s1 1s2 2s1 2p2 3s1

2s1 2p1 3s1 1s1 3d2 1s1 2s1 2p1 3d1 1s1 2s1 3s2 1s2 3s1 3p2 1s2 2s2 2p1 3d1 1s2 2s1 2p2 3d1

2s1 2p1 3d1 1s1 2s1 3d1 1s1 2s1 3s1 3p1 1s1 2s1 3d2 1s2 3s1 3d2 1s2 2s2 3s1 3p1 1s2 2s1 3s2 3d1

2s1 3s1 3p1 1s1 3p2 1s1 2s1 3p1 3d1 1s1 2s1 3s1 3d1 1s2 2s2 3p1 3d1 1s2 2s1 3p2 3d1

2s1 3p1 3d1 1s2 3d1 1s1 2p2 3p1 1s1 2s1 2p2 1s2 2s1 3d3

2p2 3p1 2s1 3s1 3d1 1s1 2p1 3s2 1s1 3s1 3p2

2p1 3s2 2p2 3s1 1s1 2p1 3s1 3d1 1s1 2s1 3p2

2p1 3p2 2p2 3d1 1s1 2p1 3p2 1s1 2p2 3s1

2p1 3d2 1s2 3s1 1s1 2p1 3d2 1s1 2p2 3d1

3s2 3p1 3s2 3d1 1s1 3s2 3p1 3s2 3d1

3p1 3d2 3s1 3p2 1s1 3s1 3p1 3d1 1s1 3s1 3d2

3s1 3d2 1s1 3p3 1s1 3p2 3d1

3p2 3d1 1s1 3p1 3d2 1s1 3d3

3d3 2s2 2p1 3s1 1s1 2s1 2p1 3p1

2s2 2p1 3d1

2s2 3s1 3p1

2s2 3p1 3d1

be evaluated using well known potentials and can, in con-
trast to the self-energy, be calculated as a series expansion
in Zα. Here we include the first two contributions scaling
as α(Zα)4 mc2 (Uehling potential [35]) and as α(Zα)6

mc2. All-order calculations have been performed and they
show that the convergence in Zα is fast [36–38].

The second order one-electron radiative corrections
have not been fully calculated. Still missing (for high-Z)
is the two-loop self-energy (except for a piece of an ir-
reducible diagram [39]), which can only be calculated by
extrapolating recent calculations for low-Z [40]. This kind
of extrapolation has been shown to be unreliable for the
one loop self-energy [30], and we will use this value as an
uncertainty in the theoretical calculation. For uranium all
other pieces (mixed self-energy vacuum polarization dia-
grams [39,41]) have been calculated recently. The two-loop
vacuum polarization can be easily calculated by combin-
ing the Källén and Sabry contribution [42], with the differ-
ence between self-consistent and perturbative calculations
of the Uehling potential.

QED evaluations of two-electron contributions have
been performed only for the two-electron ion case [43,44].
In most cases the calculation is done by evaluating one-
electron self-energy in some screening potential

[3,43,45–47]. Even those calculations are difficult and time
consuming. In this paper we use an approximation based
on the Welton method [9,48], which has been proven ac-
curate by comparison with direct evaluation [49,47], al-
though it cannot replace a ab initio calculation.

Finally, and to be complete, we include a nuclear po-
larization correction [50–52], which in this case is small
compared to the experimental precision and second-order
QED corrections.

In Table 4, an example of the energy calculation, for
berylliumlike uranium, to show the typical order of mag-
nitude of the different contributions described above. En-
ergy values for all the 41 2s1/2−2p3/2 transitions that we
have identified in the present calculation for uranium, tho-
rium and bismuth are displayed in Tables 5, 6, and 7 re-
spectively.

2.4 Relative intensities

Our calculation shows that there are many more lines
in the experimental window than observed in the experi-
ment. It was shown in both experiments that many lines
are not produced because their initial state is not excited.
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Table 3. List of the LS configurations included as correlation in the calculation of the experimental observed transitions for
neonlike, oxygenlike and fluorinelike.

N O F

Initial Final Initial Final Initial Final

1s1 2s2 2p4 1s2 2p5 1s1 2s2 2p5 1s2 2p6 1s1 2s2 2p6 1s2 2s2 2p4 3p1

1s1 2p6 2s2 2p5 1s2 2s1 2p4 3p1 1s1 2s1 2p6 1s2 2s1 2p5 3p1 1s2 2s2 2p3 3s2

2s1 2p6 1s2 2s2 2p2 3p1 1s2 2s1 2p3 3s2 2s2 2p6 1s2 2s1 2p4 3s2 1s2 2s2 2p3 3s1 3d1

1s2 2s1 2p3 3p1 1s2 2s2 2p1 3s2 1s2 2s1 2p3 3s1 3d1 1s2 2s2 2p3 3p1 1s2 2s1 2p4 3s1 3d1 1s2 2s2 2p3 3p2

1s2 2s1 2p2 3s2 1s2 2s2 2p1 3s1 3d1 1s2 2s1 2p3 3p2 1s2 2s2 2p2 3s2 1s2 2s1 2p4 3p2 1s2 2s2 2p3 3d2

1s2 2s1 2p2 3p2 1s2 2s2 2p1 3p2 1s2 2s1 2p3 3d2 1s2 2s2 2p2 3s1 3d1 1s2 2s1 2p4 3d2

1s2 2s1 2p2 3s1 3d1 1s2 2s2 2p1 3d2 1s2 2p5 3s1 1s2 2s2 2p2 3p2

1s2 2s1 2p2 3d2 1s2 2s2 3s2 3p1 1s2 2p5 3d1 1s2 2s2 2p2 3d2

1s2 2s1 2p1 3s2 3p1 1s2 2s2 3s1 3p1 3d1 1s1 2s1 2p5 3s1 1s1 2s1 2p4 3s2

1s2 2s1 2p1 3s1 3p1 3d1 1s2 2s2 3p3 1s1 2s1 2p5 3d1 1s1 2s1 2p4 3s1 3d1

1s2 2s1 2p1 3p3 1s2 2s2 3p1 3d2 1s1 2p6 3p1 1s1 2s1 2p4 3p2

2s2 2p5 3s1 1s1 2s1 2p4 3d2

2s2 2p5 3d1 1s2 2p4 3s2

2s1 2p5 3s2 1s2 2p4 3s1 3d1

2s1 2p5 3p2 1s2 2p4 3p2

2s1 2p5 3d2 1s2 2p4 3d2

2s1 2p6 3p1 2s2 2p4 3s2

2s2 2p4 3s1 3d1

2s2 2p4 3p2

2s2 2p4 3d2

Table 4. Contribution to the energy of the berylliumlike (2s1/2 2p3/2)1P1 and (2s2
1/2)1S0 levels of U88+ and to the Be transition

energy E = (2s1/2 2p3/2)1P1 − (2s2
1/2)1S0. All energies are in eV.

(2s1/2 2p3/2) 1P1 (2s2
1/2) 1S0 E

Coulomb energy −323068.194 −327614.170 4545.976

Magnetic energy 409.889 414.123 −4.234

Lowest-order order (∆ω2) −14.896 −9.715 −5.182

High-order retardation (∆ωn, n > 2) −5.603 1.271 −6.874

Electrostatic correlation −1.159 −10.814 9.655

Magnetic correlation −1.390 −2.256 0.866

Retardation correlation 0.296 0.335 −0.039

Self-energy 784.733 841.331 −56.598

Self-energy screening −15.509 −18.657 3.149

Vacuum polarization (one loop) −189.990 −204.673 14.683

Vacuum polarization (two loops) −2.792 −3.037 0.245

Two loops SE + SE–VP −0.110

Total level energy −322104.615 −326606.262 4501.537

However not all transitions that we have found appear in
the calculations carried out in [1–4]. We have thus tried to
evaluate the relative intensities for all transitions. For that
purpose we computed electron impact excitation and ion-
ization cross sections as well as radiative transition rates
and branching ratios for all identified transitions.

The transition rates are evaluated using our fully rel-
ativistic code [11,53], and taking into account non-ortho-
gonality between initial and final states [12].

Electron-impact excitation cross sections were com-
puted using the first Born approximation following the
work of Kim et al. [54,55]. The electron beam energy was
set to 100 keV as in the experiments reported in refer-
ences [1,2]. In this calculation we used the MCDF wave
functions for the atom and a Dirac wave function for the
free electron. Only the Coulomb interaction between the
free electron and the atomic electrons was considered.
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Table 5. Effective excitation cross sections σeff
exc, effective ionization cross sections σeff

ion, effective cross sections σeff = σeff
exc +σeff

ion,
transition probabilities TP , branching ratios BR, relative intensities RI, and energies E of the 2s1/2−2p3/2 transitions in U89+

trough neonlike U82+ from our calculations. The excitation cross sections are in m2, the transition probabilities are in s−1 and
the energies are in eV. See Table 1 for definitions of Key.

Key Ion σeff
exc σeff

ion σeff TP BR RI E

Li U89+ 1.80× 10−26 0.00 1.80× 10−26 8.53 × 1013 1.00 0.67 4460.00

Be U88+ 1.85× 10−26 0.00 1.85× 10−26 1.20 × 1014 1.00 0.69 4501.54

B1 U87+ 2.40× 10−26 0.00 2.40× 10−26 1.20 × 1014 1.00 0.89 4522.09
B2 U87+ 1.26× 10−26 0.00 1.26× 10−26 1.25 × 1014 1.00 0.47 4522.37
B3 U87+ 9.71× 10−31 0.00 9.71× 10−31 9.34 × 1013 1.00 0.00 4540.66
B4 U87+ 2.55× 10−30 0.00 2.55× 10−30 1.86 × 1014 1.00 0.00 4542.40
C1 U86+ 0.00 2.11× 10−27 2.11× 10−27 2.90 × 1013 1.00 0.08 4426.33
C2 U86+ 0.00 1.51× 10−27 1.51× 10−27 9.11 × 1013 1.00 0.06 4478.65
C3 U86+ 2.53× 10−36 9.04× 10−28 9.04× 10−28 6.15 × 1013 0.28 0.01 4501.29
C4 U86+ 0.00 3.01× 10−28 3.01× 10−28 9.27 × 1013 1.00 0.01 4540.65
C5 U86+ 1.83× 10−26 9.04× 10−28 1.92× 10−26 1.24 × 1014 1.00 0.72 4550.56
C6 U86+ 2.27× 10−30 9.04× 10−28 9.06× 10−28 2.00 × 1013 0.11 0.00 4555.61
C7 U86+ 0.00 1.51× 10−27 1.51× 10−27 1.73 × 1014 0.92 0.05 4560.57
C8 U86+ 1.48× 10−30 9.04× 10−28 9.05× 10−28 9.36 × 1013 0.95 0.03 4566.43
C9 U86+ 2.27× 10−30 9.04× 10−28 9.06× 10−28 1.69 × 1014 0.89 0.03 4572.28
C10 U86+ 0.00 1.51× 10−27 1.51× 10−27 1.41 × 1013 0.08 0.00 4577.24
C11 U86+ 1.48× 10−30 9.04× 10−28 9.05× 10−28 4.67 × 1012 0.05 0.00 4583.10
C12 U86+ 2.53× 10−36 9.04× 10−28 9.04× 10−28 1.62 × 1014 0.72 0.02 4600.16

N1 U85+ 9.49× 10−27 2.41× 10−27 1.19× 10−26 2.97 × 1013 1.00 0.44 4440.57
N2 U85+ 1.97× 10−30 1.61× 10−27 1.61× 10−27 3.01 × 1012 0.03 0.00 4464.37
N3 U85+ 1.97× 10−30 1.61× 10−27 1.61× 10−27 8.98 × 1013 0.97 0.06 4483.04
N4 U85+ 2.38× 10−31 2.41× 10−27 2.41× 10−27 8.71 × 1013 0.94 0.08 4508.48
N5 U85+ 2.38× 10−31 8.03× 10−28 8.04× 10−28 5.93 × 1012 0.06 0.00 4527.16
N6 U85+ 8.73× 10−31 1.61× 10−27 1.61× 10−27 6.41 × 1013 0.28 0.02 4531.10
N7 U85+ 4.76× 10−30 8.03× 10−28 8.08× 10−28 6.12 × 1013 0.27 0.01 4534.97
N8 U85+ 8.09× 10−37 8.03× 10−28 8.03× 10−28 1.91 × 1014 1.00 0.03 4548.77
N9 U85+ 9.21× 10−27 1.61× 10−27 1.08× 10−26 9.68 × 1013 1.00 0.40 4586.94
N10 U85+ 3.66× 10−26 2.41× 10−27 3.90× 10−26 1.93 × 1014 0.69 1.00 4589.58
N11 U85+ 4.76× 10−30 1.61× 10−27 1.61× 10−27 1.57 × 1014 0.69 0.04 4612.96
N12 U85+ 8.73× 10−31 8.03× 10−28 8.04× 10−28 1.64 × 1014 0.72 0.02 4627.77
N13 U85+ 4.76× 10−30 1.61× 10−27 1.61× 10−27 8.09 × 1012 0.04 0.00 4631.64

O1 U84+ 2.35× 10−26 2.91× 10−27 2.64× 10−26 1.57 × 1014 1.00 0.98 4526.10
O2 U84+ 0.00 5.82× 10−28 5.82× 10−28 3.79 × 1013 1.00 0.02 4527.88
O3 U84+ 2.28× 10−26 1.75× 10−27 2.46× 10−26 6.37 × 1013 0.50 0.45 4558.49
O4 U84+ 2.95× 10−30 1.75× 10−27 1.75× 10−27 1.65 × 1014 0.84 0.05 4572.68
O5 U84+ 2.95× 10−30 1.75× 10−27 1.75× 10−27 3.17 × 1013 0.16 0.01 4573.49
O6 U84+ 2.28× 10−26 1.75× 10−27 2.46× 10−26 2.00 × 1011 0.50 0.46 4643.12

F U83+ 1.87× 10−26 1.16× 10−27 1.98× 10−26 1.98 × 1014 1.00 0.74 4594.83

Ne1 U82+ 0.00 3.93× 10−27 3.93× 10−27 3.29 × 1013 0.17 0.02 4583.93
Ne2 U82+ 0.00 3.93× 10−27 3.93× 10−27 1.65 × 1014 0.83 0.12 4595.80
Ne3 U82+ 1.19× 10−26 1.31× 10−27 1.32× 10−26 2.10 × 1014 1.00 0.49 4635.07
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Table 6. Effective excitation cross sections σeff
exc, effective ionization cross sections σeff

ion, effective cross sections σeff = σeff
exc +σeff

ion,
transition probabilities TP , branching ratios BR, relative intensities RI, and energies E of the 2s1/2−2p3/2 transitions in Th87+

trough neonlike Th80+ from our calculations. The excitation cross sections are in m2, the transition probabilities are in s−1 and
the energies are in eV. See Table 1 for definitions of Key.

Key Ion σeff
exc σeff

ion σeff TP BR RI E

Li Th87+ 1.97 × 10−26 0.00 1.97 × 10−26 6.63 × 1013 1.00 0.67 4025.85

Be Th86+ 2.02 × 10−26 0.00 2.02 × 10−26 9.38 × 1013 1.00 0.69 4068.21
B1 Th85+ 2.62 × 10−26 0.00 2.62 × 10−26 9.37 × 1013 1.00 0.89 4090.92
B2 Th85+ 1.38 × 10−26 0.00 1.38 × 10−26 9.84 × 1013 1.00 0.47 4090.76
B3 Th85+ 1.24 × 10−30 0.00 1.24 × 10−30 7.34 × 1013 1.00 0.00 4108.09
B4 Th85+ 3.30 × 10−30 0.00 3.30 × 10−30 1.46 × 1014 1.00 0.00 4109.79

C1 Th84+ 0.00 2.55 × 10−27 2.55 × 10−27 2.27 × 1013 1.00 0.09 3999.57
C2 Th84+ 0.00 1.82 × 10−27 1.82 × 10−27 7.15 × 1013 1.00 0.06 4049.14
C3 Th84+ 2.49 × 10−36 1.09 × 10−27 1.09 × 10−27 4.83 × 1013 0.27 0.01 4071.31
C4 Th84+ 0.00 3.64 × 10−28 3.64 × 10−28 7.28 × 1013 1.00 0.01 4109.66
C5 Th84+ 2.00 × 10−26 1.09 × 10−27 2.11 × 10−26 9.78 × 1013 1.00 0.71 4120.07
C6 Th84+ 2.93 × 10−30 1.09 × 10−27 1.09 × 10−27 1.57 × 1013 0.11 0.00 4123.36
C7 Th84+ 0.00 1.82 × 10−27 1.82 × 10−27 1.36 × 1014 0.93 0.06 4128.98
C8 Th84+ 1.91 × 10−30 1.09 × 10−27 1.09 × 10−27 7.40 × 1013 0.95 0.04 4134.57
C9 Th84+ 2.93 × 10−30 1.09 × 10−27 1.09 × 10−27 1.33 × 1014 0.89 0.03 4140.49
C10 Th84+ 0.00 1.82 × 10−27 1.82 × 10−27 1.10 × 1013 0.07 0.00 4146.11
C11 Th84+ 1.91 × 10−30 1.09 × 10−27 1.09 × 10−27 3.54 × 1012 0.05 0.00 4151.70
C12 Th84+ 2.49 × 10−36 1.09 × 10−27 1.09 × 10−27 1.27 × 1014 0.73 0.03 4172.44

N1 Th83+ 1.04 × 10−26 2.91 × 10−27 1.33 × 10−26 2.33 × 1013 1.00 0.45 4016.29
N2 Th83+ 2.56 × 10−30 1.94 × 10−27 1.94 × 10−27 2.35 × 1012 0.03 0.00 4037.19
N3 Th83+ 2.56 × 10−30 1.94 × 10−27 1.94 × 10−27 7.06 × 1013 0.97 0.06 4056.41
N4 Th83+ 3.00 × 10−31 2.91 × 10−27 2.91 × 10−27 6.85 × 1013 0.94 0.09 4081.42
N5 Th83+ 3.00 × 10−31 9.70 × 10−28 9.70 × 10−28 4.65 × 1012 0.06 0.00 4100.64
N6 Th83+ 1.14 × 10−30 1.94 × 10−27 1.94 × 10−27 5.06 × 1013 0.28 0.02 4102.73
N7 Th83+ 6.15 × 10−30 9.70 × 10−28 9.76 × 10−28 4.81 × 1013 0.27 0.01 4107.22
N8 Th83+ 2.51 × 10−36 9.70 × 10−28 9.70 × 10−28 1.51 × 1014 1.00 0.03 4119.59
N9 Th83+ 1.00 × 10−26 1.94 × 10−27 1.20 × 10−26 7.63 × 1013 1.00 0.41 4157.77
N10 Th83+ 3.99 × 10−26 2.91 × 10−27 4.28 × 10−26 1.52 × 1014 0.69 1.00 4160.34
N11 Th83+ 6.15 × 10−30 1.94 × 10−27 1.95 × 10−27 1.24 × 1014 0.69 0.05 4182.05
N12 Th83+ 1.14 × 10−30 9.70 × 10−28 9.71 × 10−28 1.29 × 1014 0.72 0.02 4196.79
N13 Th83+ 6.15 × 10−30 1.94 × 10−27 1.95 × 10−27 6.30 × 1012 0.04 0.00 4201.27

O1 Th82+ 2.57 × 10−26 3.23 × 10−27 2.89 × 10−26 1.24 × 1014 1.00 0.98 4100.77
O2 Th82+ 0.00 6.47 × 10−28 6.47 × 10−28 2.99 × 1013 1.00 0.02 4119.40
O3 Th82+ 2.49 × 10−26 1.94 × 10−27 2.68 × 10−26 5.03 × 1013 0.50 0.45 4132.11
O4 Th82+ 3.83 × 10−30 1.94 × 10−27 1.94 × 10−27 1.30 × 1014 0.84 0.06 4145.01
O5 Th82+ 3.83 × 10−30 1.94 × 10−27 1.94 × 10−27 2.50 × 1013 0.16 0.01 4162.59
O6 Th82+ 2.49 × 10−26 1.94 × 10−27 2.68 × 10−26 1.91 × 1011 0.50 0.46 4213.79

F Th81+ 2.03 × 10−26 1.29 × 10−27 2.16 × 10−26 1.57 × 1014 1.00 0.73 4169.05

Ne1 Th80+ 0.00 4.37 × 10−27 4.37 × 10−27 2.61 × 1013 0.17 0.02 4159.35
Ne2 Th80+ 0.00 4.37 × 10−27 4.37 × 10−27 1.31 × 1014 0.83 0.12 4170.82
Ne3 Th80+ 1.35 × 10−26 1.46 × 10−27 1.50 × 10−26 1.66 × 1014 1.00 0.51 4207.82
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Table 7. Effective excitation cross sections σeff
exc, effective ionization cross sections σeff

ion, effective cross sections σeff = σeff
exc +σeff

ion,
transition probabilities TP , branching ratios BR, relative intensities RI, and energies E of the 2s1/2−2p3/2 transitions in Bi80+

trough neonlike Bi73+ from our calculations. The excitation cross sections are in m2, the transition probabilities are in s−1 and
the energies are in eV. See Table 1 for definitions of Key.

Key Ion σeff
exc σeff

ion σeff TP BR RI E

Li Bi80+ 2.67× 10−26 0.00 2.67 × 10−26 2.70 × 1013 1.00 0.67 2788.47

Be Bi79+ 2.76× 10−26 0.00 2.76 × 10−26 3.90 × 1013 1.00 0.69 2833.04
B1 Bi78+ 3.55× 10−26 0.00 3.55 × 10−26 3.92 × 1013 1.00 0.88 2860.13
B2 Bi78+ 1.89× 10−26 0.00 1.89 × 10−26 4.16 × 1013 1.00 0.47 2858.80
B3 Bi78+ 2.95× 10−30 0.00 2.95 × 10−30 3.10 × 1013 1.00 0.00 2873.57
B4 Bi78+ 8.25× 10−30 0.00 8.25 × 10−30 6.15 × 1013 1.00 0.00 2875.22

C1 Bi77+ 0.00 3.66× 10−27 3.66 × 10−27 9.46 × 1012 1.00 0.09 2784.89
C2 Bi77+ 0.00 2.61× 10−27 2.61 × 10−27 3.02 × 1013 1.00 0.07 2826.64
C3 Bi77+ 1.05× 10−35 1.57× 10−27 1.57 × 10−27 2.04 × 1013 0.27 0.01 2861.73
C4 Bi77+ 0.00 5.23× 10−28 5.23 × 10−28 3.08 × 1013 1.00 0.01 2881.21
C5 Bi77+ 2.71× 10−26 1.57× 10−27 2.86 × 10−26 4.14 × 1013 1.00 0.71 2892.39
C6 Bi77+ 7.20× 10−30 1.57× 10−27 1.57 × 10−27 6.30 × 1012 0.10 0.00 2891.08
C7 Bi77+ 0.00 2.61× 10−27 2.61 × 10−27 5.79 × 1013 0.93 0.06 2898.65
C8 Bi77+ 4.84× 10−30 1.57× 10−27 1.57 × 10−27 3.22 × 1013 0.96 0.04 2903.25
C9 Bi77+ 7.20× 10−30 1.57× 10−27 1.57 × 10−27 5.71 × 1013 0.90 0.04 2909.16
C10 Bi77+ 0.00 2.61× 10−27 2.61 × 10−27 4.59 × 1012 0.07 0.00 2916.73
C11 Bi77+ 4.84× 10−30 1.57× 10−27 1.57 × 10−27 1.19 × 1012 0.04 0.00 2921.33
C12 Bi77+ 1.05× 10−35 1.57× 10−27 1.57 × 10−27 5.45 × 1013 0.73 0.03 2946.45

N1 Bi76+ 1.42× 10−26 4.18× 10−27 1.83 × 10−26 9.81 × 1012 1.00 0.46 2805.32
N2 Bi76+ 6.51× 10−30 2.79× 10−27 2.79 × 10−27 9.84 × 1011 0.03 0.00 2818.27
N3 Bi76+ 6.51× 10−30 2.79× 10−27 2.79 × 10−27 3.00 × 1013 0.97 0.07 2838.80
N4 Bi76+ 6.82× 10−31 4.18× 10−27 4.18 × 10−27 2.92 × 1013 0.94 0.10 2862.12
N5 Bi76+ 6.82× 10−31 1.39× 10−27 1.39 × 10−27 1.95 × 1012 0.06 0.00 2882.65
N6 Bi76+ 2.92× 10−30 2.79× 10−27 2.79 × 10−27 2.17 × 1013 0.28 0.02 2879.41
N7 Bi76+ 1.52× 10−29 1.39× 10−27 1.41 × 10−27 2.04 × 1013 0.27 0.01 2885.83
N8 Bi76+ 4.30× 10−35 1.39× 10−27 1.39 × 10−27 6.47 × 1013 1.00 0.03 2894.43
N9 Bi76+ 1.36× 10−26 2.79× 10−27 1.64 × 10−26 3.28 × 1013 1.00 0.41 2930.60
N10 Bi76+ 5.39× 10−26 4.18× 10−27 5.81 × 10−26 6.51 × 1013 0.69 1.00 2933.07
N11 Bi76+ 1.52× 10−29 2.79× 10−27 2.80 × 10−27 5.37 × 1013 0.70 0.05 2950.33
N12 Bi76+ 2.92× 10−30 1.39× 10−27 1.40 × 10−27 5.57 × 1013 0.72 0.03 2964.44
N13 Bi76+ 1.52× 10−29 2.79× 10−27 2.80 × 10−27 2.59 × 1012 0.03 0.00 2970.86

O1 Bi75+ 3.49× 10−26 4.64× 10−27 3.95 × 10−26 5.33 × 1013 1.00 0.99 2885.41
O2 Bi75+ 0.00 9.29× 10−28 9.29 × 10−28 1.28 × 1013 1.00 0.02 2899.16
O3 Bi75+ 3.36× 10−26 2.79× 10−27 3.64 × 10−26 2.16 × 1013 0.49 0.45 2913.40
O4 Bi75+ 9.68× 10−30 2.79× 10−27 2.80 × 10−27 5.67 × 1013 0.84 0.06 2921.66
O5 Bi75+ 9.68× 10−30 2.79× 10−27 2.80 × 10−27 1.07 × 1013 0.16 0.01 2940.23
O6 Bi75+ 3.36× 10−26 2.79× 10−27 3.64 × 10−26 1.59 × 1011 0.51 0.46 2985.24
F Bi74+ 2.76× 10−26 1.86× 10−27 2.94 × 10−26 6.83 × 1013 1.00 0.73 2951.07

Ne1 Bi73+ 0.00 6.27× 10−27 6.27 × 10−27 1.14 × 1013 0.17 0.03 2943.73
Ne2 Bi73+ 0.00 6.27× 10−27 6.27 × 10−27 5.71 × 1013 0.83 0.13 2956.99
Ne3 Bi73+ 2.20× 10−26 2.09× 10−27 2.41 × 10−26 7.28 × 1013 1.00 0.60 2986.15
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Table 8. Detailed breakdown of the contributions to the transition energy between 1s22s2p2
1/22p4

3/2 and 1s22s22p2
1/22p3

3/2 in
F-like uranium. All individual corrections include effects due to the finite size of the nucleus and the reduced mass of the
electron.

MBPT MCDF CI a

Coulomb
frozen core 4642.571 4642.571
2nd order contributions relaxation −0.127 −0.049 b

core-core −1.590
correlation −0.859

higher order relaxation 0.007
core-core −0.017
Total corr.+cc −2.459 −1.732

Total 4639.985 4640.790 4640.230
Breit
frozen core −1.614 c −1.759 d

2nd order contributions relaxation −0.018 −0.066
core-core −0.192
correlation −0.032
Total corr.+cc −0.224 −0.392

Retardation beyond Breit
frozen core −6.378 −6.378
2nd order contributions

relaxation −0.093 −0.093
correlation 0.032 0.032

Total −8.295 −8.656 −8.500
Mass polarization −0.040 −0.040 −0.040
Total many-body part 4631.650 4632.094 4631.690
QED
Self-energy (one loop) one electron −56.598

two-electron 5.151
Vacuum Polarization (one loop)
Uehling one electron 16.336

two-electron −1.557
Wichman and Kroll one-electron −0.739

two-electron 0.064
Self-energy (two loops) 0.080(80)
Vacuum pol.(two loops) 0.155
Mixed SE-VP −0.190
Total QED −37.297 −38.020
Nuclear Polarization [50–52] 0.030 0.030 0.030
Total 4594.383 4594.827 4593.700
Experiment 4593.83(12)
Exp.-Theory −0.553 −0.997 0.130

a Cheng and Chen [3].
b The MCDF results are not strict 2nd order effects, but includes higher orders as well.
c Obtained with the Breit interaction treated self-consistently as a Dirac-Fock-Breit potential.
d Obtained with the Gaunt interaction treated self-consistently as a Dirac-Fock-Gaunt potential.

Because of the high electron beam energy in the EBIT
the first Born approximation is adequate.

A full evaluation of the ionization cross-section would
be a daunting task. Recently a new method was reported
by Kim and Rudd [56], which has been shown to provide
accurate results, even at energies close to the ionization
threshold. Here we use the approximation in which only
the binding energy of the ionized electron and the kinetic
energy of the incoming electron are needed. The popula-
tion of the different J sublevels of the final state is assumed
to be statistical.

The relative intensity for each spectral line was evalu-
ated by multiplying the sum of the corresponding ioniza-
tion and excitation cross sections for all possible ground
states leading to the initial state of the transition, by the
branching ratio. The results were normalized to the max-
imum intensity obtained over all ionic species for a given
ion. As in the experimental paper, we assume that all ionic
species present in the EBIT have equal intensities, and
that all ions are in their ground state (low collisional-
ity hypothesis). We also neglected cascade from higher-
lying excited states, because of the complexity of such a
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calculation, which would necessitate a complete modeling
of the EBIT, a task well beyond the scope of the present
paper.

The results of these calculations are displayed in Tables
5, 6, and 7 for the three ions studied here. We find that
the prominent lines correspond to those identified in the
two experimental papers.

3 Detailed comparison between RMBPT and
MCDF for F-like uranium

In the last few years [17,57] two of us have successfully
combined MCDF and RMBPT for transitions between
hole states in heavy elements. Generally we have treated
singly charged systems, which can be viewed as the neutral
element plus a hole.Kα - transitions in uranium were, e.g.,
treated in this way. Fluorine-like systems can be viewed
as a neon-like system with a hole and we have thus a
very similar situation to the singly charged hole states,
although the complications due to the 82 electrons with
n > 2, in the case of uranium, is removed.

For inner hole states the correlation contribution is not
dominated by the admixture of a few important configu-
rations, instead it is the sum of many contributions each
with a rather low weight. Due to the large nuclear charge
felt by the inner electrons the correlation is also domi-
nated by second order effects. This is an ideal situation
for RMBPT, which consequently is a convenient choice
for calculating correlation is these systems.

As a starting point for fluorine-like uranium we choose
the neon-like system and perturb it with either a hole in
2s or a hole in 2p3/2. The lowest order contributions to the
shift due to a hole is the opposite of the eigenvalue of the
Dirac-Fock Hamiltonian. This is the frozen core result on
the first row of Table 8. It is called frozen since the other
core orbitals have not had the possibility to relax due to
the presence of the hole. This relaxation is then calculated
separately. For general hole states this is a very important
contribution. In reference [17], e.g., it was found to be
−37.8 eV for a 2s-hole in xenon and an accurate calcula-
tion requires then relaxation effects to all orders. However,
for fluorine-like uranium the relaxation is much less impor-
tant, ≈ −3 eV and the cancellation between a 2s and a
2p3/2 hole is almost perfect, probably due to the absence of
n > 2-electrons. A treatment to second order is thus suffi-
cient, which can be seen from the small effect from higher
order relaxation in Table 8. In an MCDF calculation the
relaxation is included when the single configuration result
is calculated in a spherical-symmetric Hartree-Fock po-
tential including the hole. The relaxation obtained with
the two approaches differs slightly since the RMBPT re-
sult includes also effects which cannot be accounted for by
a spherical-symmetric potential. Usually these latter ef-
fects are, however, of minor importance. In Table 8 small,
but quite different, relaxation contributions are found with
RMBPT and MCDF. The relatively big difference is prob-
ably due to the large cancellation between the relaxation
for a 2s and a 2p3/2 hole, which exposes small differences.

On the next rows in Table 8 we list more detailed many-
body effects. By correlation we mean admixture of config-
urations consisting of two excited orbitals. A discrete nu-
merical basis set is used to describe the bound states and
the continuum as described in [17,57–59]. We also include
admixture of configurations where the hole in, e.g., 2s, is
replaced by two holes in other orbitals and one electron in
an excited orbital. This effect, called core-core contribu-
tion, contributes by −1.59 eV. This effect is also treated
to all orders, where it is allowed to mix with relaxation
contributions, and a small contribution of ≈ −0.02 eV is
then obtained. In these admixtures we include excited or-
bitals with `max = 10 ( `max = 6 for Breit contributions
which will be discussed below). In the MCDF calculation
the correlation and core-core contributions are calculated
together. Configurations including orbitals up to 3d5/2 are
included and the result is −1.67 eV which should be com-
pared to −1.59− 0.86 = −2.45 eV from the RMBPT cal-
culation. The difference is most likely due to the smaller
number of excited configurations included in the MCDF
calculation. The MCDF calculation does also include some
contributions not accounted for by perturbation theory
corresponding to triple and quadruple excitations, but we
have no measure of how important these are.

The next step is to add the Breit interaction and cal-
culate how the different contributions change. The results
are displayed in Table 8. In the RMBPT calculation the
Breit interaction is included in the orbitals which are ob-
tained self-consistently in the Dirac-Fock-Breit potential.
The MCDF calculation treats only the Gaunt part (i.e.,
the magnetic part) of the Breit interaction in this way,
which might explain the difference in the frozen core and
relaxation results. The difference in the Breit correlation is
explained, as for the Coulomb correlation, by the number
of included configurations.

When different calculation schemes are compared it is
important to compare them at the lowest possible level,
otherwise it is very hard to understand how the differ-
ences appear. All calculations of transitions in heavy ions
consist of one many-body part and one part due to radia-
tive effects, usually called QED. In Table 9 we compare
our RMBPT calculation with the MBPT calculations by
Johnson et al. [4]. In perturbation theory it is possible to
use different starting potentials. The final result should be
independent of the starting point provided the perturba-
tion expansion is carried on to all orders. In practice one
has always, except perhaps for very small systems, to in-
troduce approximations. The many-body effects included
in both calculations are, e.g., limited to the so called sin-
gle and double excitations and reference [4] is strictly re-
stricted to second order contributions. Finally both cal-
culations neglect correlation contributions from virtual
electron-positron pairs, which in principle are needed if
a calculation should be independent of the starting point.
Small differences due to the starting point are thus ex-
pected. In reference [4] two different local potentials are
used. One is the direct part of the Dirac-Fock potential
from a neon-like core (called potential A). The other po-
tential, called potential B, is also the direct part of the
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Table 9. A comparison between the many-body effects for the transition energy between 1s22s2p2
1/22p4

3/2 and 1s22s22p2
1/22p3

3/2

in F-like uranium as calculated here and in reference [4]. Both calculations use relativistic many-body perturbation theory and
the results are displayed on different levels in the perturbation expansion. The lowest and first order results include Coulomb
and Breit interaction as well as retardation beyond Breit interaction and effects due to the finite mass and size of the nucleus.
The starting potential is here the Dirac-Fock-Breit potential for the closed shell neon-like system, while potential A and B from
reference [4] refer to two different local potentials. The result from an all order treatment should be independent of the starting
potential and the difference between the different starting points is an indication of the importance of higher order effects.

Present reference [4] potential A reference [4] potential B
lowest and first order 4634.447 4633.459 4633.603
Coulomb 2nd order −2.576 −1.859 −1.899
Breit 2nd order −0.241 0.016 −0.139
Coulomb higher order −0.010
MBPT 4631.619 4631.616 4631.565
QED −37.304 −37.549

Dirac-Fock potential, but for one 2p3/2-electron less. In
the present calculation we use the full Dirac-Fock-Breit
potential for the neon-like system. The difference relative
to the result obtained with potential A of reference [4]
is the exchange contribution and the Breit interaction.
Although the contributions on different levels in the per-
turbation expansion are quite different, due to different
starting points (see Tab. 9), the final MBPT results are
very similar with all three approaches. We note especially
that the present result and the result from potential A of
reference [4] agree well within 0.01 eV. The good agree-
ment between the three starting points as well as the small
size of the calculated higher terms from the perturbation
expansion indicate that the system is indeed dominated
by effects up to second order in the expansion.

In Table 8 we compare our results with the CI cal-
culation by Cheng and Chen [3]. The starting point in
reference [3] is a Dirac-Slater potential with an approxi-
mation of the exchange contribution included. The calcu-
lation includes the so called singles and doubles, which is
the same as in the MBPT calculations. The inclusion of
excited configurations is truncated after `max = 3, and the
contributions from higher `-values is approximated by ex-
trapolation. This might be the reason for the differences of
0.24 eV and 0.17 eV, for the total Coulomb and Breit con-
tributions respectively, compared to the present RMBPT
calculation where `max = 10 for the Coulomb correlation
and `max = 6 for the Breit correlation are included.

The difference between the QED calculation of Cheng
and Chen [3] and the present work is of the order of
0.7 eV. It is most likely due to two causes. The first
one is that Cheng and Chen do a direct calculation of
the self-energy with the potential they use to define their
wave function, thus obtaining the two-electron radiative
corrections directly as a screening effect to the full one-
electron radiative corrections. While not a substitute to a
full evaluation of second order diagrams pertaining to the
two-electron self-energy, it is probably a slightly better
method than ours. The second cause is that Cheng and
Chen do not include second-order one-electron radiative
corrections, which contribute by ≈ 0.1 eV to the differ-
ence between the two calculations.

4 Comparison with experiment and discussion

4.1 Comparison with experiment for Th and U

In Table 10 we present a list of the theoretical and experi-
mental energies for both uranium and thorium. This table
shows all transitions observed in references [1] and [2], for
the 2s1/2 − 2p3/2 electric dipole transitions and charge

states from U89+ to U82+, and from Th87+ to Th80+. The
transitions within each charge state were ordered accord-
ing to the uranium transition energies.

It is very important to compare Th and U to estab-
lish the different line identifications. Such an identification
should not be based on a single observation. Although our
rate calculation shows that the observed lines are indeed
the most intense ones, there are certainly many produc-
tion mechanisms beyond the ones considered here that
could result in enhancing other transitions. Also some lines
are close enough to each other so that attribution could
be problematic. However, if such a misidentification was
done, the variation with Z of the theory-experiment dif-
ference would change faster than for correctly identified
lines.

We performed here the standard line identification pro-
cedure, which is to check that the experiment-theory (ob-
served-calculated or o-c) is a slowly varying function of
Z. In Figure 1 we plot o-c for Th and U, and a Dirac-
Fock calculation which include only one LS configuration.
Differences between our best MCDF theoretical and ex-
perimental energy in thorium and uranium are plotted in
Figure 2. In both cases the o-c differences are identical
for Th and U, within the experimental uncertainty, ex-
cept for the Ne line for which the o-c difference changes
by 1.24± 0.56 eV.

From both figures we can be very confident that all
identifications, except may be for Ne and C (for which
changes between U and Th are slightly too large), are cor-
rect. However there are no other lines among the 41 which
in principle could be possible candidates to replacements
in the present identification. One can find better matches,
but not with the same candidate for both Th and U. This
should be a mandatory criterium, as it would be diffi-
cult to accept the possibility of very different population
mechanisms for Th and U. In both cases the variation of
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Table 10. Comparison between theoretical and experimental energies for uranium and thorium ions. See Table 1 for definitions of
Key. In the case of the uranium ions, measured energies Eexp and corresponding experimental keys, Keyexp, are from reference [1].
∆E = E − Eexp and the values listed under ∆EA, ∆EB, ∆EC, ∆ED are, respectively, the differences between the following
theoretical values and experimental ones: EA are MCDF-Grant calculations from reference [1], EB and EC are the MBPT-A
and MBPT-B, respectively, calculations from reference [4] and ∆ED are CI-DS calculations from reference [3]. In the case of
thorium ions, measured energies Eexp and corresponding experimental keys, Keyexp, are from reference [2]. ∆E = E−Eexp and
the ∆EA = EA − Eexp, where EA are MCDF-Grant calculations from reference [2].

U Th Bi

Key Keyexp Eexp
a ∆E ∆EA ∆EB ∆EC ∆ED Eexp

b ∆E ∆EA Eexp
c ∆E

Li Li 4459.37 ± 0.35 0.63 2.3 0.12 −0.24 −0.06 4025.23 ± 0.15 0.62 1.80 2788.139 ± 0.018 0.33
Be Be 4501.72 ± 0.27 −0.18 3.6 1.16 2.56 −0.19 4068.47 ± 0.13 −0.26 3.20
B1 B1 4521.39 ± 0.60 0.70 3.4 −0.09 4089.92 ± 0.50 1.00 3.40
B2 B2 4521.39 ± 0.60 0.98 3.4 0.14 4089.92 ± 0.50 0.84 3.00
C5 C 4548.32 ± 0.20 2.24 4.0 0.07 −0.36 −0.02 4118.43 ± 0.13 1.64 3.70
N1 N1 4440.82 ± 0.20 −0.25 3.1 −0.08 4016.67 ± 0.14 −0.38 2.30
N9 N2 4586.55 ± 0.58 0.39 4.8 0.46 4157.20 ± 0.28 0.57 4.30
N10 N3 4588.73 ± 0.26 0.85 4.5 −0.09 4159.49 ± 0.23 0.85 3.90
O1 O1 4525.26 ± 0.25 0.84 4.0 −0.39 4099.60 ± 0.20 0.08 3.80
O3 O2 4556.42 ± 0.48 2.07 3.8 0.18 4129.94 ± 0.17 −0.20 3.30
O6 O3 4641.76 ± 0.21 1.36 5.5 0.02 4212.80 ± 0.14 0.63 4.60
F F 4593.83 ± 0.17 1.00 6.0 0.48 0.19 −0.16 4168.06 ± 0.16 0.99 4.60
Ne3 Ne 4630.93 ± 0.33 4.14 8.0 1.92 1.77 4204.92 ± 0.45 2.90 5.50

a Beiersdorfer et al. [1].
b Beiersdorfer et al. [2].
c Beiersdorfer et al. [61].
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Fig. 1. Observed-Calculated (o-c) plot with Single configura-
tion Dirac-Fock calculation for Th and U ions. The transitions
are label with the experimental keys from reference [2].

energy differences between Th and U is more than twice
the combined experimental error bars.

The calculation for Ne-like ions as presented is much
less accurate than the others for a very specific reason. It
happens that a very strong contribution to the 1s22s2p6

3s 1S0 level comes from the 1s22s22p53p 3P0, which is very
close in energy. But because of its symmetry, this config-
uration prevents convergence even with the most sophis-
ticated methods. In fact it does not converge, even when
evaluated as a single configuration. Therefore, we basically
did not add any correlation to the Ne transitions, because
the imbalance between initial and final state was too large.
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Fig. 2. Observed-Calculated (o-c) plot with Multi Configura-
tion Dirac-Fock calculation for Th and U ions. The transitions
are label with the experimental keys from reference [2].

4.2 Detailed study of the Oxygen isoelectronic
sequence

Because the difference in Z between Th and U is small,
we have looked for isoelectronic sequences that could be
observed on a wider range. Finally we found experimental
data [60] for oxygenlike lines and made an o-c plot in Fig-
ure 3 for the oxygen lines with Z ranging from 20 to 92.
The calculation in this case has been done with the same
set of configuration in the whole range. The o-c energy
difference varies relatively smoothly with Z. In Figure 4
we have plotted the correlation energy for initial and final
states used in the calculation of the oxygen isoelectronic
sequence. One can easily notice the strong variation of the
final state correlation with Z. This strong variation is due
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Fig. 3. Observed-Calculated (o-c) plot for O1, O2, and O3
lines for 20 ≤ Z ≤ 92. The transitions are labeled with the
experimental keys from reference [2].

to the large change of the mixing coefficients between the
1s22s22p4 and the 1s22s22p23d2 configurations as a func-
tion of Z.

We would like to correct a conclusion of references
[1,2]. In both papers the authors performed EAL (Ex-
tended Average Levels) MCDF calculations with the code
of Grant and collaborators. They observed large discrep-
ancies between their calculation and the experimental data
(up to 8 eV). This discrepancy is attributed by them
to correlation and QED effects. They conclude that the
MCDF method is not adequate for these calculations. This
conclusion is repeated in the theoretical paper of Cheng
and Chen [3]. Here we have proven (see for example Figs.
1 and 2) that the MCDF method in OL (Optimized Lev-
els) mode, with the Welton approximation for self-energy
screening reproduces rather well the experimental ener-
gies, and is more efficient than RMBPT for ions far from
closed shell configurations. The unsatisfactory agreement
with the MCDF calculation comes from the EAL approx-
imation and the inadequate self-energy screening (using
average orbital radius to define an effective Z to evaluate
the self-energy).

- 9

- 8

- 7

- 6

- 5

- 4

- 3

- 2

2 0 4 0 6 0 8 0 100

2s 2p5 1P
1

2 s2 2p4 1S
0

2s 2p5 3P
2

2 s2 2p4 3P
2

C
o

rr
e

la
tio

n
 

e
n

e
rg

y 
(e

V
)

Z

Fig. 4. Correlation contribution to the initial and final states
used in the calculation of the oxygen isoelectronic sequence.

Although, there are no experimental (except for lithi-
umlike ions [61]) or theoretical data on the 2s1/2 − 2p3/2

transitions in bismuth ions, we have extended our calcula-
tions to this transitions in order to see if the charge states
of this ion have the same structure as the correspondent
charge states of the uranium and thorium ions discussed
above. A measurement of Bi could help resolve the prob-
lem discussed at the beginning of this section.

In Table 7 our theoretical data of the 2s1/2 − 2p3/2

transitions in Bi80+ trough neonlike Bi73+ (in eV) are pre-
sented. We observe that the relative position of the tran-
sition energies in boronlike, Bi78+, and carbonlike, Bi77+,
charge states are not the same as in uranium and thorium
ions, which means that those levels are very sensitive to
the charge of the nucleus.

5 Conclusion

We have presented theoretical calculations performed with
the MCDF method, including QED effects and contribu-
tions from correlation, for 2s1/2 − 2p3/2 transition ener-

gies of the charge states lithiumlike Bi80+ trough neonlike
Bi73+, lithiumlike Th87+ trough neonlike Th80+ and lithi-
umlike U89+ trough neonlike U82+. The excitation cross
sections and transition probabilities were computed for
the same cases using MCDF wave functions in monocon-
figuration only and the length gauge result was adopted.
Forty one allowed electric dipole transitions for the charge
states of each ion were calculated. In the studied uranium
and thorium ions we confirmed that only the thirteen ex-
perimental observed transitions have non-negligible inten-
sities. All forty one transitions for bismuth ions were calcu-
lated for the first time. The present bismuth calculations
thus serve as reference for future experiments with this
ion.

The results were compared with the experimental data
available for the uranium and thorium ions. In general, our
transition energies agree with the experimental values to
a level less than 1 eV, with the exception of the neonlike
case. These good results prove that the MCDF method,
with small number of configurations, and the Welton ap-
proximation for the self-energy screening, is flexible and
precise. It can be outperformed by RMPBT for ions close
to a closed shell configuration, and by sophisticated RCI
methods. The latter however would fail for number of elec-
trons larger than 10, because of the computer resources
required to do them. The present MCDF code, because
of its flexibility also allowed to predict the existence of
several more transitions in the experimental window and
to evaluate their intensity, showing that a slightly more
sensitive experiment could detect several more lines.

Because of the difficulty inherent to all methods, a
scheme combining advance MCDF and RMBPT features
is most likely to provide the most general method to solve
with high accuracy problems like the one presented here.

The MCDF calculations presented in this work have been done
using the computer facilities at the Centro de F́ısica Atómica
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da Universidade de Lisboa and at the Laboratoire de Physique
Atomique et Nucléaire (LPAN). This research was
supported in part by JNICT (Portugal) under project
Praxis/2/2.1/FIS/7223/94. One of us, J. P. Santos, acknowl-
edges support from the Embassy of France in Portugal and
JNICT for his stay in the LPAN.
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59. S. Salomonson, P. Öster, Phys. Rev. A 41, 4670 (1990).
60. National Institute of Standards and Technology

Atomic Spectroscopic Database, available on the URL
http://aeldata.phy.nist.gov/nist atomic spectra.html.

61. P. Beiersdorfer et al., preprint UCRL-JC-127437 (unpub-
lished).


